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THE VIBRATIONS OF A BOUNDED PLATE IN A FLUID* 

V.A. GOLOVANOV, A.L. POPOV and G.N. CHERNYSHEV 

An approximate analytic method is proposed to solve boundary vlaue problems 
for the harmonic oscillations of a bounded plate in contact with a fluid. 
The procedure for constructing the successive approximations is such 
that the first approximation will describe the solution in the main, 
while subsequent approximations reduce to small refinements on the first 
approximation. The method is realized in solving a model problem on the 
plane vibrations of a plate, a strip in a rigid screen with unilateral 
contact with a liquid medium. Results of a numerical solution of the 
problem are presented in addition to the approximate analytic solution. 
By comparing these solutions one can estimate the error of the analytic 
method in determining the resonance frequencies and modes of plate 
vibrations in a fluid. This problem has been examined earlier in a 
somewhat different formulation; the most complete account of the results 
and bibliographic information can be found in /l/. 

1. We will examine the plane problem of the vibrations in cylindrical bending modes of 
an elastic plate, a strip of width 21 and thickness 2h (h/l< 1) in an infinite rigid screen 
on the boundary of a liquid half-space (-KJ <x< OO,Z.> 0). We will assume the vibrations 
to be excited by a linearly lumped transverse load qh(z)exp(--iot) applied to the plate at an 
equal distance from the edges z = &l on which we assign hinge-support conditions w = a2wiax2= 

0 (w is thd plate deflection) (Fig.1). After extraction of the time factor exp(--iot), the 
system of equations of the joint vibrations of the plate and fluid is written as follows 

Lw (E) + P (E, 0) = ql-‘6 (E), AP + y2P = 0 (1.1) 

limr’l~ g- iyP)=O, r=(% +q2)‘12 
v-L-2 ( 
y = kl, k = o/c, L G Dl-'d4/d~4 - 2dp,h 

A+&+-& Dm-.?=-, 
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Here P(E,q) is the acoustic pressure, pO, E,v are the density, elastic modulus, and 
Poisson's ratio of the plate material, and p and c are the fluid density and the velocity of 
sound therein. 

The wavelengths of the bending waves are considerably less than the wavelengths of space 
waves in the medium for vibrations of plates in contact with a fluid in the range up to the 
coincidence frequence /l/. The coincidence frequency is found at the limit of applicability 
of the dynamic equations of the theory of thin plates; the wavelengths of a free bending half- 
wave, that exceeds the plate thickness by less than an order, corresponds to it. It can 
consequently be assumed thatthecomponentof the solution corresponding to the spatial waves 
in the medium should be slowly-varyingascomparedwith the component describing the vibrations 
of the plate jointly with the fluid in the near-wall layer. 
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Fig.1 

A recursion process to determine the rapidly and slowly varying components of the plate 
deflection and the acoustic pressure at an arbitrary point of the medium is constructed in 
/2/ in solving an analogousproblemforan unbounded plate. The convergence of the successive 
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approximations to the exact solution in a geometric progression with a denominator that is a 
large parameter is shown. This procedure can be carried over to the problem of the forced 
vibrations of a bounded plate. Since the first approximation of the process mentioned for the 
rapidly varying component of the solution describes the near pressure field of the non-radiating 
surface-wave type, corresponding formulas will yield unlimited growth of the vibration 
amplitudes at resonance frequencies of the system. The latter construction of the slowly- 
varying components of the solution satisfying the radiation condition does not alter the 
situation since this component is added with the first approximation. Consequently, the 
procedure for constructing the first approximation in this problem should be corrected so that 
the damping influence of the sound radiation is already be taken into account at this stage 
of obtaining the rapidly-varying component. 

Following the computations in /2/, we will represent the rapidly varying component of the 
solution of system (1.1) for vibration modes symmetrical about the line of load application 
in the form 

wl (El= j$l fj 4% Pl(& 9) = - aa@ j$ @fj (E) eXp (- Ujp1) 

fj(E)=~jcOS$jl5/ +bjsinBj[Ei* Bj=(CCj’+ y’)‘* 

(1.2) 

Here a~ > 0, Rea,,,> 0 are the roots of the characteristic equation, corresponding to 
exponentially damped integrals of the acoustic pressure in the neighbourhood oftheplate 

a6 + 2yaa3 - $ (g, - y") a - g,y' -= 0 (1.3) 

g1= 3 (1 -v”,(+, go=&+, c+!‘l 

For an antisymmetric exciting load, the vibration modes have an analogous form with the 
addition of the multiplier SD E. 

Six conditions must be formulated to determine the six unknown constant cj, bj (i = 1, 2, 3) 
in (1.2). Four are known, two boundary conditions and two conditions extracting the singularity 
oftheplate deflection on the force line of action that agrees with the principal singularity 
of the deflection function for plate vibrations in a vacuum. The non-penetration condition 
also imposes a constraint on the singularity of the pressure function by relating it to the 
singul.arity of the deflection function on the force line of action. The remaining arbitrariness 
in the constants is reduced when giving the values of the pressure function on the plate edges. 

To derive this condition we will represent the exact value of the fluid pressure on the 
plate surface in the form of an integral of the product of the deflection function and Green's 
function of the Neumann problem for the Helmholtz equation 

P(& 0)~ w * G= dpl { w(QG(E, 0; Eo, 0)dEo (1.4) 
-1 

G(t, ri; Eoo, ?lo)= - +z J@’ (Y f(E - 50)” -I- (‘1 - (- VWl’~~ 
h’=, 

(H,(')(z) is the Hankel function of thefirstkind of zeroth order). Substitution of this 
expression into (1.1) results in an inteqrodifferential equation in the plate deflection. 
The first approximation of th$ deflection function (1.2) satisfies this equation to the 
accuracy of the difference between P,(&O) and wr *G. This difference can be made zero in 
not more than two points (for the synrnetric solution) by using the remaining arbitrariness 
intheselection of the constants, The best approximation is obtained in the case when these 
points are chosen on the plate edges 

P,(E,O) - w,* G = 0, 5 = 31 
Substitution of (1.2) into the condition listed above results in six algebraic equations 

to determine the constants c,, bj (I= 1, 2, 3) 

2 -+_g, 
Zj& = 

j=l 
k=l, 2, 3; Cfj(l)@jn-O, n=O, 2 

j=l 
s 

l!I fj (E) @’ (Y (I - 5)) @ 
j=-1 

(1.5) 

xjl = B$j* XjS = Xj& 

The solution wI, P, constructed in this manner can be supplemented to the exact by 
introducing new unknown funct-ions mUlr P,, where w = w1 + w, and P = P, -j- P,. 

The equation for the second approximation of the function w, is homogeneous while the 
equation for Pa is inhomogeneous with the right side 
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reflecting the discontinuity inthederivative of the first approximation (1.2) for the pressure 
function on the force line of action. Because of the exponential damping of the coefficient 
for the delta function, this discontinuity is localized on a small portion of the z-axis near 
the plate. 

The solution of the inhomogeneous equation for Pz will be constructed by using Green's 
function of the Helmholtz equation that satisfies the homogeneous Neumann condition on the 
plate surface and the radiation condition at infinity. Its convolution with the right side 
of this equation determines the radiation component of the pressure which can be represented 
in the form of a sum P,, = P2trn) -I- P2f’), where Pzfm) is in agreement with the pressure produced 
in vibrations of an infinite plate subjected to a linear117 lumped force /2/, while P&l) 
characterizes the sound radiation from the plate edges. 

On the plate surface, P,, does not vanish identically and does not satisfy the first 
equation of (1.1). We reduce the residual which is formed by setting 

P, z P,, + Pm, aP,,iaq I’)+J = dplw,, 

Substituting this sum into the system (1.1) we obtain a homogeneous Helmholtz equation 
in P,, and in the equation 

It is different from the first equation in (1.1) by its right side. Consequently, (1.2) 
can be used for wr as an approximate Green's function of Eq.(1.6). Then 

The functions w,, P, determined in this manner differ from the exact solution by the 
quantities wQ, Pa. Consequently, the recursion process can be continued: by writing the sums 

W = Wr + Wa t Wat and P=P,+ P,$- P,and substituting them into the initial system of equations 
we obtain the third approximation equation. 

2. Let us compare the approximate analytic solution with the results of a numerical 
solution. We construct the numerical solution of the problem under consideration on the basis 
of an integrodifferential equation which is written as follows in dimensionless form 

dW 
v - p,hW = $p&’ s H:) (V) w” (5) d5 + PaQ'a (5 - 5,) (2.1) 

-1 

Q Q'=- 
F 

Here h is the dimensionless frequency, pjfi= i,2,3,d) are dimensionless parameters, fQ 
is a coordinate of the line of load application, and W, F are scaling constants. 

Extracting the irregular component in the solution, we represent the deflection function 
in the form (we henceforth omit the superscript ') 

w (t,, = WI ct., + PsQ Go (&v f;Q) 

where &,(F,,F&) is Green's function of the problem without taking account of the fluid. The 
regular component We satisfies an equation of the form (2.1) in which the second term on 
the right side of the equation is 

1 

+ PYPal~ (5, F,), ff (E, E,) = 
s 

a:” (v) Go (L5.J dS 
-1 

For a numerical solution of the integrodifferential equation fox @Jo (5) we will introduce 
in the section - I<<E<i a uniform net 

h~+i = {ej = --i 3- li - i)S, i = 1, 2,. . -1 N + 1; 6 = 2/N} 

Let us approximate the equationatthe nodes I= 2, 3,. . .,N by replacing the derivative 
of the function Q(&) byba difference ratio of the second order of accuracy, and the function 

% (8) under the integral sign by a piecewise-linear interpolating function (in the mesh ANil)' 
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We introduce the points outside the contour EN+a= eN+r+6, e,= &-8 to approximate the 
derivative in (2.1) at the points j=2,N, and the derivatives in the boundary conditions. 
Then by using equations approximating the boundary conditions, values of the mesh function UP, 
at the nodes j=O,i,N+1,N+2 are eliminated from the resolving system of algebraic equations. 
We consequently arrive at equations that are written as follows in matrix-vector form: 

A,W = (i/2) paPt+ (A,W i- p&b (2.2) 

w = [WI, ws.. . . , WJ-, H = [Hz, a,, . . ) HJ, Hj = H (E,, t,) 

Here A,, A, are matrices of order N--l, approximating the differential and integral 
operators. The tape matrix A, contains real elements. The complex elements of the matrix AB 
are expressed by the formula 

‘jk = - (k- I - f, hOk,j+l + (k- i + ‘) hO,+,, j+l + 6-’ (ki+l,j+l- ki, j+l) 
i,k=l,2 ,,.., N--l 

The matrices (h,ko), (h$)(j = 1,2, . . ., N; k = 1, 2,.. ., N+i) have the following simple structure 

11 a1 a1 a2 . . . “N 1, 

(Q= ‘* ” =’ . * 'N-1 ’ I 
jb 

HP) (~4) 6 
. . . . . . . . . . . . . . . 1 ’ ‘j = (j-l)6 s 
UN aN-1 ON-2 *. . al i 

- h h bz . . . bN 

(h$= 
- bt - bl bl . . . bN-1 

. . . . . . . . . . . . . . 

- bN - bN-~ - bN.+ . . . bl 
j! 

bj = s H$ (~0 Ed4 
(i-1)b 

After separating real and imaginary parts in (2.2) we obtain a system of algebraic 
equations of order 2(N-1) in the real and imaginary parts of the values 'oj that approximate 
the regular component of the deflection Q(&) at the nodes j= 2,3,..., N. 

The case of a steal plate making contact with water was examined in the numerical 
investigation made with the algorithm mentioned. The following values were given fur the 
parameters of the problem: l/h = 100, p1 = 1.2.1P, pp= 1.558.10". ps = 480 and p,= 3.494. The value of 
the deflection of a plate under static loading by a lumped force applied at the middle point 
was taken as the scaling constant fy: W= pF/(BD). 

The results of the numerical investigation were compared with the results of the 
approximate analytic method (Sect.l), and in the case of resonance vibrations, with the 
solution of the problem of free vibrations of an infinite plate (-co<z<c=a) that is in 
contact with a fluid. In the latter case a solution of the standing-wave type exists lo(E).= 

IIJ~ sink&.. The dispersion equation that is a condition for this solution to exist reduces to 
(1.3) for the quantity (k,* - Y~)‘/~, k, > y. 

We present below, in the first row, five values of the first resonance frequencies L 
found by the numerical method. The second row contains the results of a computation using 
(1.2)-(1.5). The estimates of the resonance frequencies determined from the dispersion 
equation for an integer number of half-waves covering the width of the bounded plate are 
presented in the third row 

0.0062 0.0564 0,151 
O,OO68 

0,301 0,504 
0,0618 

3) 0,0126 
0,154 0,299 0,509 

0,0653 0,167 0,320 0,528 

The solution the standing-wave type can be obtained from (1.2) if P,(+i,O)=O are taken 
as boundary conditions for the pressure function. In this case the resonance vibration modes 
agree in form with the natural vibrations modes of a bounded plate in a vacuum. Therefore, 
values of the resonance frequencies can be determined to a first approximation by using the 
above-mentioned dispersion equation, however such an estimate is quite rough for the lowest 
frequencies. We note that the estimate of the first resonance frequency by the Lamb method 
/3/ has an error of the same order. 

The modulus of the complex deflection amplitude w=wR+iwl reaches its maximum value for 
resonance vibrations, where maxa Iw,(E)I~DxIx~Iw~ (E)I. As computations show, graphs of the 
functions ~~(6) for resonance vibrations in the first symmetric and antisymmetricmodes do 
not differ, in practice, from graphs of the natural modes of the deflection of a bounded plate 
in a vacuum. However, noticeable differences are observed forthe second and subsequent 
symmetric and antisymmetric modes. Graphs of the functions u)~(&) are represented by the 
solid lines in Figs.2 and 3 for resonance vibrations in the second and third symmetric modes 
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(curve 2 is the numerical solution, and curve 2 is the approximate analytic solution) and 
corresponding natural vibrations modes of a hinge-supported plate in a vacuum, normalized to 

the maximum value of u,, are superposed by dashes. It is seen that the approximate analytic 

solution (l-2)-(1.5) enables us to determine the resonance vibration frequency not only with 

sufficient accuracy, but also describes correctly the singularities of the resonance 

vibration modes of a plate in a fluid, which distinguish them from the corresponding vibration 

modes in a vacuum. Despite the fact that these differences are not very great (the discrepancy 

in the half-wave amplitudes is 27% for thesecond symmetric mode and 16.5% for the third), they 

exert it considerable influence on the value of the deflection amplitudes and the resonance 

acoustic field generated by the plate. 

Fig.2 Fig.3 

For a hinge-supported plate in a vacuum, the n-th natural symmetric vibration mode is 

described by the function I+, = A, cos (m&/Z) (n = 1, 3, 5, . .). Considering that it also describes 

the resonance vibrations in a fluid, as is assumed in a number of papers, we will determine 

the amplitude factor A,’ at the corresponding resonance frequency. To do this, we substitute 

wn into the integrodifferential Eq.(2.1), multiply its left and right sides by COS (n&/2) 

and integrate over the width of the plate. We hence arrive at the expression 

The real part of the expression in the square brackets vanishes at the resonance frequency, 
while the imaginary part determines the resonance amplitude. Computations executed by means 

of this formula yield the following values of the dimensionless amplitude for the resonance 

vibrations of a plate in contact with a fluid in the first, second, and third symmetric modes: 

IA,I=3.3; ~A,~=0~065;~~A,(=0,0012. The corresponding maximum amplitudes obtained by the numerical 

method are 3.9; 0.52; 0.078. The approximate analytic solution (1.2)-(1.5) yields the values 

4.4; 0.40; 0.065. 
A comparison of these results shows that, withthe exceptionof th'e first resonance mode, 

the utilization of the natural plate vibrations modes in a vacuum to describe the resonance 

hydroelastic vibrations of a plate, that are symmetrical about the central plane I= 0, result 
inasubstantial reduction in the resonance vibration amplitudes. This is explained by the 

compensating influence of the fluid, whereupon the integral of the resonance deflection function 

taken over the width of the plate is much less than the integral of the function describing 
the natural mode of symmetric plate vibrations with the same number of waves, in a vacuum. 

The error in determining the deflection amplitudes for resonance vibrations involves an error 

in calculating the pressure in the far field. Thus, for instance, identifying the second 

symmetric resonance mode of hydroelastic plate vibrations (with three half-waves over the 
width) with its natural mode results in an eightfold reduction in the maximum deflection 

amplitude and in a f/8 -foldreduction in the far-field pressure. 

On the other hand, the compensating influence of the fluid for the antisynunetric plate 
vibration modes is felt in a reduction in the resonance vibration amplitudes as compared with 

their expected values when using the corresponding natural vibration modes in a vacuum. 
Nevertheless, because of the general equilibrium with respect to the non-deformed state, their 

level as a whole is considerably higher than for the neighbouring symmetric modes. This is 

manifested most clearly in a comparison of the maximum amplitudes of the deflection for the 
first symmetric and antisymmetric modes: 3.9 for &=0.0062 against 33 for a, = 0.0584 (Eg = 0.4). 
It is seen that despite the general tendency towards a reduction in the resonance vibration 
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amplitudes as the frequency increases, the amplitude of the first antisymmetric mode is 
almost an order of magnitude higher than for thefirstsymmetric vibration mode. 

Therefore, the influence of the fluid on the vibrations of a bounded plate manifests 
itself not only in a reduction in the resonance frequencies, but also in the distortion of 
the resonance plate vibration modes that exerts a substantial influence on the deflection 
amplitude and the acoustic pressure in the medium. 
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LONGITUDINAL VIB~TIONS OF ELASTIC RODS* 

m KHAN’ CHAU 

One-dimensional equations are constructed for the high-frequency 
longitudinal vibrations of elastic rods. Problems in a section are 
formulated to determine the "effective" elastic characteristics of the 
rod. In the case of a circular rod, the elastic characteristics, dispersion 
curve, and spectrum are found. Comparisons are made with analogous 
results of the three-dimensional theory of elasticity and with experiment. 

1. One dimensional theory of high-frequency longitudinal vibrations of rods. 
We consider an isotropic homogeneous straight rod of length 2L with a constant cross-section 
S that occupies a volume V in the non-deformed state in the Cartesian coordinate system 
z1,z~,x3~x (the superscript 3 is usually omitted) ~ We place the origin of the coordinate 
system at the centre of the rod and direct the x axis along its central axis. We will assume 
the cross-section to be centrally symmetric (if (x1,$)= S, then (-21, --1)E S). * 

Under given initial conditions the rod performs vibrational motion. The problem is to 
construct a one-dimensional dynamic model of the rod high-frequency vibrations that is 
asymptotically exact in the long-wave domain, and is moreover qualitatively descriptive of 
the rod integral characteristics in the short-wave domain. Taking a variational approach as 
a basis,/l, 21, we postulate that the rod motion will occur in conformity with the following 
variational principle 

where K and @are the one-dimensional kinetic and internal energy densities of the rod. 
The formulas 

Iz = l/a@, t, @ = ‘J&u~x (~-2) 

turn out to be true in the classical theory of longitudinal vibrations of a rod, where u is 
the longitudinal displacement averaged over the cross-section, E is Young's modulus, and p 
is the density of the elastic material of the rod. The model (1.11, (1.2) describes the 
low-frequency, long-wave vibrations of the rod. It is natural to assume that as the vibration 
frequency increases the internal degrees of freedom that characterise the new modes (branches) 
of the rod vibrations will become substantial and these vibrations can be described, in a 
certain frequency range, by eliminating an appropriate set of internal degrees of freedom in 
the number of arguments of the functions K and do. Within the framework of this approach it 
is most important to determine the set of essential degrees of freedom and to set up the 
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